Drawing Homer Simpson with DAX trigonometric functions

Recently I started exploring the limits of standard charts in Power BI and ended up drawing all sorts of mathematical functions. So I’ve decided to port a famous Homer Simpson-like curve to DAX for the fun of it and was impressed by the result.

As always, there is no magic involved, just the usual trio:

1. Prepare some iterator ranges in M
2. Add some curve functions in DAX
3. Visualize it 😍

Depending on how you look at this, the final solution can be summarized into 65 LOC = 15 LOC of M + 2*25 LOC of DAX. But check out the curves on those lines.

The M code

The Power Query code necessary for this doodle generates some specific ranges for drawing various parts of the cartoon figure. For convenience, all of them are expressed in units of π.

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
 let //generate a range between [start] and [end] in number of [steps] with a category descriptor range = (category,steps,start,end)=>List.Accumulate({1..steps},{{category,start}},(s,c)=>s&{{category,start+(c/steps)*(end-start)}}), //shortcut pi = Number.PI //stiching multiple ranges into a an iterator table in #table(type table[#"fn"=number,#"i"=number], range(0,20,35*pi,36*pi)& range(1,10,31*pi,32*pi)& range(2,10,27*pi,28*pi)& range(3,30,23*pi,24*pi)& range(4,30,19*pi,20*pi)& range(5,30,15*pi,17*pi)& range(6,30,11*pi,13*pi)& range(7,30,7*pi,9*pi)& range(8,30,3*pi,5*pi)& range(9,30,1*pi,3*pi))
view raw Homer.pq hosted with ❤ by GitHub

The DAX code

The DAX code is broken down into 2 measure for X and Y coordinates. Each measure performs two steps:

1. Define a collection of 10 heavily trigonometric functions (fn[index])
2. Map the curve function fn[index] to a category fn which corresponds to a drawing range iterator

X coordinates measure

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
 X = VAR t = LASTNONBLANK(Homer[i],1) VAR fnX = LASTNONBLANK(Homer[fn],1) VAR fn0 = (-11/8*sin(17/11 - 8*t) - 3/4*sin(11/7 - 6*t) - 9/10*sin(17/11 - 5*t) + 349/9*sin(t + 11/7) + 17/12*sin(2*t + 8/5) + 288/41*sin(3*t + 8/5) + 69/10*sin(4*t + 8/5) + 8/5*sin(7*t + 13/8) + 4/7*sin(9*t + 28/17) + 4/7*sin(10*t + 19/11) + 1051/8) VAR fn1 = (-3/4*sin(11/7 - 5*t) - 54*sin(11/7 - t) + 237/8*sin(2*t + 11/7) + 52/11*sin(3*t + 33/7) + 38/9*sin(4*t + 11/7) + 249/2) VAR fn2 = (-16/9*sin(14/9 - 5*t) - 5/2*sin(14/9 - 3*t) + 781/8*sin(t + 33/7) + 291/11*sin(2*t + 11/7) + 23/7*sin(4*t + 11/7) + 18/19*sin(6*t + 11/7) + 2/5*sin(7*t + 61/13) + 24/23*sin(8*t + 14/9) + 1/27*sin(9*t + 5/11) + 4/11*sin(10*t + 11/7) + 1/75*sin(11*t + 5/8) + 1411/7) VAR fn3 = (-7/11*sin(13/10 - 13*t) + 3003/16*sin(t + 33/7) + 612/5*sin(2*t + 11/7) + 542/11*sin(3*t + 47/10) + 137/7*sin(4*t + 51/11) + 53/7*sin(5*t + 17/11) + 23/12*sin(6*t + 41/9) + 94/11*sin(7*t + 51/11) + 81/11*sin(8*t + 41/9) + 53/12*sin(9*t + 23/5) + 73/21*sin(10*t + 13/9) + 15/7*sin(11*t + 6/5) + 37/7*sin(12*t + 7/5) + 5/9*sin(14*t + 27/7) + 36/7*sin(15*t + 9/2) + 68/23*sin(16*t + 48/11) + 14/9*sin(17*t + 32/7) + 1999/9) VAR fn4 = (1692/19*sin(t + 29/19) + 522/5*sin(2*t + 16/11) + 767/12*sin(3*t + 59/13) + 256/11*sin(4*t + 31/7) + 101/5*sin(5*t + 48/11) + 163/8*sin(6*t + 43/10) + 74/11*sin(7*t + 49/12) + 35/4*sin(8*t + 41/10) + 22/15*sin(9*t + 29/14) + 43/10*sin(10*t + 4) + 16/7*sin(11*t + 6/5) + 11/21*sin(12*t + 55/14) + 3/4*sin(13*t + 37/10) + 13/10*sin(14*t + 27/7) + 2383/6) VAR fn5 = (-1/9*sin(7/5 - 10*t) - 2/9*sin(11/9 - 6*t) + 20/11*sin(t + 16/15) + 7/13*sin(2*t + 15/4) + 56/13*sin(3*t + 25/9) + 1/6*sin(4*t + 56/15) + 5/16*sin(5*t + 19/8) + 2/5*sin(7*t + 5/16) + 5/12*sin(8*t + 17/5) + 1/4*sin(9*t + 3) + 1181/4) VAR fn6 = (-1/6*sin(8/11 - 5*t) + 5/8*sin(t + 6/5) + 13/5*sin(2*t + 45/14) + 10/3*sin(3*t + 7/2) + 13/10*sin(4*t + 24/25) + 1/6*sin(6*t + 9/5) + 1/4*sin(7*t + 37/13) + 1/8*sin(8*t + 13/4) + 1/9*sin(9*t + 7/9) + 2/9*sin(10*t + 63/25) + 1/10*sin(11*t + 1/9) + 4137/8) VAR fn7 = (-17/13*sin(6/5 - 12*t) - 15/7*sin(25/26 - 11*t) - 13/7*sin(3/14 - 10*t) - 25/7*sin(9/13 - 6*t) - 329/3*sin(8/17 - t) + 871/8*sin(2*t + 2) + 513/14*sin(3*t + 5/4) + 110/9*sin(4*t + 3/8) + 43/8*sin(5*t + 1/5) + 43/13*sin(7*t + 42/11) + 49/16*sin(8*t + 11/13) + 11/5*sin(9*t + 2/7) + 5/7*sin(13*t + 42/13) + 1729/4) VAR fn8 = (427/5*sin(t + 91/45) + 3/11*sin(2*t + 7/2) + 5656/11) VAR fn9 = (-10/9*sin(7/10 - 4*t) - 7/13*sin(5/6 - 3*t) - 732/7*sin(4/7 - t) + 63/31*sin(2*t + 1/47) + 27/16*sin(5*t + 11/4) + 3700/11) RETURN SWITCH(TRUE(), fnX=0,fn0, fnX=1,fn1, fnX=2,fn2, fnX=3,fn3, fnX=4,fn4, fnX=5,fn5, fnX=6,fn6, fnX=7,fn7, fnX=8,fn8, fnX=9,fn9, BLANK())
view raw HomerX.dax hosted with ❤ by GitHub

Y coordinates measure

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
 Y = VAR t = LASTNONBLANK(Homer[i],1) VAR fnX = LASTNONBLANK(Homer[fn],1) VAR fn0 = (-4/11*sin(7/5 - 10*t) - 11/16*sin(14/13 - 7*t) - 481/11*sin(17/11 - 4*t) - 78/7*sin(26/17 - 3*t) + 219/11*sin(t + 11/7) + 15/7*sin(2*t + 18/11) + 69/11*sin(5*t + 11/7) + 31/12*sin(6*t + 47/10) + 5/8*sin(8*t + 19/12) + 10/9*sin(9*t + 17/11) + 5365/11) VAR fn1 = (-75/13*sin(14/9 - 4*t) - 132/5*sin(11/7 - 2*t) - 83*sin(11/7 - t) + 1/7*sin(3*t + 47/10) + 1/8*sin(5*t + 14/11) + 18332/21) VAR fn2 = (191/3*sin(t + 33/7) + 364/9*sin(2*t + 33/7) + 43/22*sin(3*t + 14/3) + 158/21*sin(4*t + 33/7) + 1/4*sin(5*t + 74/17) + 121/30*sin(6*t + 47/10) + 1/9*sin(7*t + 17/6) + 25/11*sin(8*t + 61/13) + 1/6*sin(9*t + 40/9) + 7/6*sin(10*t + 47/10) + 1/14*sin(11*t + 55/28) + 7435/8) VAR fn3 = (-4/7*sin(14/9 - 13*t) + 2839/8*sin(t + 47/10) + 893/6*sin(2*t + 61/13) + 526/11*sin(3*t + 8/5) + 802/15*sin(4*t + 47/10) + 181/36*sin(5*t + 13/3) + 2089/87*sin(6*t + 14/3) + 29/8*sin(7*t + 69/16) + 125/12*sin(8*t + 47/10) + 4/5*sin(9*t + 53/12) + 93/47*sin(10*t + 61/13) + 3/10*sin(11*t + 9/7) + 13/5*sin(12*t + 14/3) + 41/21*sin(14*t + 22/5) + 4/5*sin(15*t + 22/5) + 14/5*sin(16*t + 50/11) + 17/7*sin(17*t + 40/9) + 4180/7) VAR fn4 = (-7/4*sin(8/11 - 14*t) - 37/13*sin(3/2 - 12*t) + 2345/11*sin(t + 32/21) + 632/23*sin(2*t + 14/3) + 29/6*sin(3*t + 31/21) + 245/11*sin(4*t + 5/4) + 193/16*sin(5*t + 7/5) + 19/2*sin(6*t + 32/7) + 19/5*sin(7*t + 17/9) + 334/23*sin(8*t + 35/8) + 11/3*sin(9*t + 21/11) + 106/15*sin(10*t + 22/5) + 52/15*sin(11*t + 19/12) + 7/2*sin(13*t + 16/13) + 12506/41) VAR fn5 = (-3/7*sin(1/10 - 9*t) - 1/8*sin(5/14 - 5*t) - 9/8*sin(26/17 - 2*t) + 18/7*sin(t + 14/11) + 249/50*sin(3*t + 37/8) + 3/13*sin(4*t + 19/9) + 2/5*sin(6*t + 65/16) + 9/17*sin(7*t + 1/4) + 5/16*sin(8*t + 44/13) + 2/9*sin(10*t + 29/10) + 6689/12) VAR fn6 = (-1/27*sin(1 - 11*t) - 1/6*sin(4/11 - 10*t) - 1/5*sin(2/11 - 9*t) - 7/20*sin(1/2 - 5*t) - 51/14*sin(29/28 - 3*t) + 23/7*sin(t + 18/5) + 25/9*sin(2*t + 53/12) + 3/2*sin(4*t + 41/15) + 1/5*sin(6*t + 36/11) + 1/12*sin(7*t + 14/3) + 3/10*sin(8*t + 19/9) + 3845/7) VAR fn7 = (-8/7*sin(1/3 - 13*t) - 9/13*sin(4/5 - 11*t) - 32/19*sin(17/12 - 9*t) - 11/6*sin(9/13 - 8*t) - 169/15*sin(8/17 - 3*t) + 917/8*sin(t + 55/12) + 669/10*sin(2*t + 4/13) + 122/11*sin(4*t + 49/24) + 31/9*sin(5*t + 1/8) + 25/9*sin(6*t + 6/7) + 43/10*sin(7*t + 1/21) + 18/19*sin(10*t + 9/13) + 2/9*sin(12*t + 31/15) + 1309/5) VAR fn8 = (-267/38*sin(3/10 - 2*t) + 625/8*sin(t + 62/17) + 8083/14) VAR fn9 = (1370/13*sin(t + 25/6) + 41/21*sin(2*t + 205/51) + 11/16*sin(3*t + 8/13) + 9/13*sin(4*t + 26/9) + 6/5*sin(5*t + 11/14) + 2251/4) RETURN SWITCH(TRUE(), fnX=0,fn0, fnX=1,fn1, fnX=2,fn2, fnX=3,fn3, fnX=4,fn4, fnX=5,fn5, fnX=6,fn6, fnX=7,fn7, fnX=8,fn8, fnX=9,fn9, BLANK())
view raw HomerY.dax hosted with ❤ by GitHub

The visual

To build the visualization:

1. Select the standard Scattered Chart.
2. Add column i to Details and Play Axis.
3. Add fn to the Legend.

And to finish all off, map X to X Axis and Y to Y axis — DOH!

Select all of the fn ids from the charts’ Legend and press play.

The origin

For the curious minds, the functions above were taken from WolframAlpha. In addition, their scientists have written a series of blog posts in which they describe the steps required for generating various curves in minute detail. Start with:

Making Formulas… for Everything—From Pi to the Pink Panther to Sir Isaac Newton

It would be an understatement to I say that everything boils down to a Fast Fourier Transform — but it does 🙂

And finally — here is the original Homer Simpson-like curve:

1. that’s funny : ) how should I paste the m code into power query? should I convert it to list or table? should I rename it to homer or what? I couldnt create the pbix file.

Like

1. You’re on the right path.
Copy the m code into power query editor. Make sure to replace all the wrapper code there. Rename the query to “Homer”. And add the DAX code as measure to this Homer table. After replicating the setup as in the scatter chart you should see the Homer’s dotted figure. If you want to replicate the animation, select all of the fn values from the legend (values 0..9), now slide the play axis and you should see the figure as being drawn.

Like

1. Andrey says: